Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Optimally weighted average derivative effects

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
      2023
    • Collection:
      Mathematics
      Statistics
    • نبذة مختصرة :
      Weighted average derivative effects (WADEs) are nonparametric estimands with uses in economics and causal inference. Debiased WADE estimators typically require learning the conditional mean outcome as well as a Riesz representer (RR) that characterises the requisite debiasing corrections. RR estimators for WADEs often rely on kernel estimators, introducing complicated bandwidth-dependant biases. In our work we propose a new class of RRs that are isomorphic to the class of WADEs and we derive the WADE weight that is optimal, in the sense of having minimum nonparametric efficiency bound. Our optimal WADE estimators require estimating conditional expectations only (e.g. using machine learning), thus overcoming the limitations of kernel estimators. Moreover, we connect our optimal WADE to projection parameters in partially linear models. We ascribe a causal interpretation to WADE and projection parameters in terms of so-called incremental effects. We propose efficient estimators for two WADE estimands in our class, which we evaluate in a numerical experiment and use to determine the effect of Warfarin dose on blood clotting function.
    • الرقم المعرف:
      edsarx.2308.05456