نبذة مختصرة : Classical Monte Carlo algorithms can theoretically be sped up on a quantum computer by employing amplitude estimation (AE). To realize this, an efficient implementation of state-dependent functions is crucial. We develop a straightforward approach based on pretraining parameterized quantum circuits, and show how they can be transformed into their conditional variant, making them usable as a subroutine in an AE algorithm. To identify a suitable circuit, we propose a genetic optimization approach that combines variable ansatzes and data encoding. We apply our algorithm to the problem of pricing financial derivatives. At the expense of a costly pretraining process, this results in a quantum circuit implementing the derivatives' payoff function more efficiently than previously existing quantum algorithms. In particular, we compare the performance for European vanilla and basket options.
Comment: 10 pages, 12 figures, 2 algorithms
No Comments.