Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Critical branching processes in digital memcomputing machines

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
      2019
    • Collection:
      Computer Science
      Condensed Matter
    • نبذة مختصرة :
      Memcomputing is a novel computing paradigm that employs time non-locality (memory) to solve combinatorial optimization problems. It can be realized in practice by means of non-linear dynamical systems whose point attractors represent the solutions of the original problem. It has been previously shown that during the solution search digital memcomputing machines go through a transient phase of avalanches (instantons) that promote dynamical long-range order. By employing mean-field arguments we predict that the distribution of the avalanche sizes follows a Borel distribution typical of critical branching processes with exponent $\tau= 3/2$. We corroborate this analysis by solving various random 3-SAT instances of the Boolean satisfiability problem. The numerical results indicate a power-law distribution with exponent $\tau = 1.51 \pm 0.02$, in very good agreement with the mean-field analysis. This indicates that memcomputing machines self-tune to a critical state in which avalanches are characterized by a branching process, and that this state persists across the majority of their evolution.
      Comment: 5 pages, 3 figures
    • الرقم المعرف:
      10.1209/0295-5075/127/30005
    • الرقم المعرف:
      edsarx.1904.04899