Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Derivation of a temperature-dependent accommodation coefficient for use in modeling laser-induced incandescence of soot

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Springer Nature
    • نبذة مختصرة :
      This paper presents a derivation of an expression to estimate the accommodation coefficient for gas collisions with a graphite surface, which is meant for use in models of laser-induced incandescence (LII) of soot. Energy transfer between gas molecules and solid surfaces has been studied extensively, and a considerable amount is known about the physical mechanisms important in thermal accommodation. Values of accommodation coefficients currently used in LII models are temperature independent and are based on a small subset of information available in the literature. The expression derived in this study is based on published data from state-to-state gas-surface scattering experiments. The present study compiles data on the temperature dependence of translational, rotational, and vibrational energy transfer for diatomic molecules (predominantly NO) colliding with graphite surfaces. The data were used to infer partial accommodation coefficients for translational, rotational, and vibrational degrees of freedom, which were consolidated to derive an overall accommodation coefficient that accounts for accommodation of all degrees of freedom of the scattered gas distributions. This accommodation coefficient can be used to calculate conductive cooling rates following laser heating of soot particles.
    • ISSN:
      0946-2171
    • الرقم المعرف:
      10.1007/s00340-008-3278-x
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....fb321639c1e0f83b7becc9c4c9885ffa