نبذة مختصرة : © The Author(s) 2021.
Exposure to Gram-negative bacterial LPS exacerbates host immune responses and may lead to sepsis, a life-threatening condition. Despite its high mortality and morbidity, no drugs specifically directed to treating sepsis are currently available. Using human cell genetic depletion, pharmacological inhibition, live-cell microscopy and organelle-targeted molecular sensors we present evidence that the channel TRPC3 is activated intracellularly during macrophage exposure to LPS and is essential for Ca2+ release from internal stores. In this manner, TRPC3 participates in cytosolic Ca2+ elevations, activation of the transcription factor NF-κB and cytokine upregulation. We also report that TRPC3 is activated by diacylglycerol generated by the phosphatidic acid phosphatase lipin-1. In accord with this, lipin-1-deficient cells exhibit reduced Ca2+ responses to LPS challenge. Finally, pharmacological inhibition of TRPC3 reduces systemic inflammation induced by LPS in mice. Collectively, our study unveils a central component of LPS-triggered Ca2+ signaling that involves intracellular sensing of lipin-1-derived DAG by TRPC3, and opens new opportunities for the development of strategies to treat LPS-driven inflammation.
This work was supported by the Spanish Ministry of Economy, Industry, and Competitiveness (grant SAF2016-80883-R) and the Spanish Ministry of Science and Innovation (grants PID2019-105989RB-I00 and PID2020-118517RB-I00), and the Regional Government of Castile and Leon (grants CSI141P20 and VA172P20, co-financed by the European Union through the European Regional Development Fund). Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM) is an initiative of Instituto de Salud Carlos III.
No Comments.