Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Penalized partial least squares for pleiotropy

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP); Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS); Laboratoire Sciences des Données et de la Décision (LS2D); Département Métrologie Instrumentation & Information (DM2I); Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)); Direction de Recherche Technologique (CEA) (DRT (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay; Centre de recherche en épidémiologie et santé des populations (CESP); Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Paul Brousse-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay; Institut Gustave Roussy (IGR); Macquarie University [Sydney]; This study was supported by the 'Ligue contre le Cancer' for its Cross Cancer Genomic Investigation of Pleiotropy project; Laboratoire d'Intégration des Systèmes et des Technologies (LIST); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST); Malbec, Odile
    • بيانات النشر:
      BMC, 2021.
    • الموضوع:
      2021
    • نبذة مختصرة :
      Background The increasing number of genome-wide association studies (GWAS) has revealed several loci that are associated to multiple distinct phenotypes, suggesting the existence of pleiotropic effects. Highlighting these cross-phenotype genetic associations could help to identify and understand common biological mechanisms underlying some diseases. Common approaches test the association between genetic variants and multiple traits at the SNP level. In this paper, we propose a novel gene- and a pathway-level approach in the case where several independent GWAS on independent traits are available. The method is based on a generalization of the sparse group Partial Least Squares (sgPLS) to take into account groups of variables, and a Lasso penalization that links all independent data sets. This method, called joint-sgPLS, is able to convincingly detect signal at the variable level and at the group level. Results Our method has the advantage to propose a global readable model while coping with the architecture of data. It can outperform traditional methods and provides a wider insight in terms of a priori information. We compared the performance of the proposed method to other benchmark methods on simulated data and gave an example of application on real data with the aim to highlight common susceptibility variants to breast and thyroid cancers. Conclusion The joint-sgPLS shows interesting properties for detecting a signal. As an extension of the PLS, the method is suited for data with a large number of variables. The choice of Lasso penalization copes with architectures of groups of variables and observations sets. Furthermore, although the method has been applied to a genetic study, its formulation is adapted to any data with high number of variables and an exposed a priori architecture in other application fields.
    • File Description:
      application/pdf
    • ISSN:
      1471-2105
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....f3124ae67ef0ddb1871055e51d0fb70c