Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Fractional Poisson field and fractional Brownian field: why are they resembling but different?

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Biermé, Hermine; Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145); Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS); Laboratoire de Mathématiques et Physique Théorique (LMPT); Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS); Modélisation aléatoire de Paris X (MODAL'X); Université Paris Nanterre (UPN); Université de Tours-Centre National de la Recherche Scientifique (CNRS); Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 ); Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS ); Laboratoire de Mathématiques et Physique Théorique ( LMPT ); Université de Tours-Centre National de la Recherche Scientifique ( CNRS ); Modélisation aléatoire de Paris X ( MODAL'X ); Université Paris Nanterre ( UPN ); Centre National de la Recherche Scientifique (CNRS)-Université de Tours
    • بيانات النشر:
      Institute of Mathematical Statistics, 2013.
    • الموضوع:
      2013
    • نبذة مختصرة :
      The fractional Poisson field (fPf) is constructed by considering the number of balls falling down on each point of $\mathbb R^D$, when the centers and the radii of the balls are thrown at random following a Poisson point process in $\mathbb R^D\times \mathbb R^+$ with an appropriate intensity measure. It provides a simple description for a non Gaussian random field that is centered, has stationary increments and has the same covariance function as the fractional Brownian field (fBf). The present paper is concerned with specific properties of the fPf, comparing them to their analogues for the fBf. On the one hand, we concentrate on the finite-dimensional distributions which reveal strong differences between the Gaussian world of the fBf and the Poissonnian world of the fPf. We provide two different representations for the marginal distributions of the fPf: as a Chentsov field, and on a regular grid in $\mathbb R^D$ with a numerical procedure for simulations. On the other hand, we prove that the Hurst index estimator based on quadratic variations which is commonly used for the fBf is still strongly consistent for the fPf. However the computations for the proof are very different from the usual ones.
    • File Description:
      application/pdf
    • ISSN:
      1083-589X
    • الرقم المعرف:
      10.1214/ecp.v18-1939
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....f1cbe3e3a4e41e428f9dd856df039be6