Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Existence, uniqueness and comparison theorem on unbounded solutions of scalar super-linear BSDEs

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      China University of Mining and Technology (CUMT); Institut de Recherche Mathématique de Rennes (IRMAR); Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut Agro Rennes Angers; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro); Fudan University [Shanghai]
    • بيانات النشر:
      Elsevier BV, 2023.
    • الموضوع:
      2023
    • نبذة مختصرة :
      This paper is devoted to the existence, uniqueness and comparison theorem on unbounded solutions of a scalar backward stochastic differential equation (BSDE) whose generator grows (with respect to both unknown variables $y$ and $z$) in a super-linear way like $|y||\ln |y||^{(\lambda+1/2)\wedge 1}+|z||\ln |z||^{\lambda}$ for some $\lambda\geq 0$. For the following four different ranges of the growth power parameter $\lambda$: $\lambda=0$, $\lambda\in (0,1/2)$, $\lambda=1/2$ and $\lambda>1/2$, we give reasonably weakest possible different integrability conditions of the terminal value for the existence of an unbounded solution to the BSDE. In the first two cases, they are stronger than the $L\ln L$-integrability and weaker than any $L^p$-integrability with $p>1$; in the third case, the integrability condition is just some $L^p$-integrability for $p>1$; and in the last case, the integrability condition is stronger than any $L^p$-integrability with $p>1$ and weaker than any $\exp(L^\epsilon)$-integrability with $\epsilon\in (0,1)$. We also establish the comparison theorem, which yields naturally the uniqueness, when either generator of both BSDEs is convex (concave) in both unknown variables $(y,z)$, or satisfies a one-sided Osgood condition in the first unknown variable $y$ and a uniform continuity condition in the second unknown variable $z$.
      Comment: 44 pages
    • ISSN:
      0304-4149
      1879-209X
    • الرقم المعرف:
      10.1016/j.spa.2022.12.008
    • الرقم المعرف:
      10.1016/j.spa.2022.12.008⟩
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....e69a29ec15b36f95259474e44e13d6f8