Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Fast and Accurate Gamma Imaging System Calibration Based on Deep Denoising Networks and Self-Adaptive Data Clustering

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Multidisciplinary Digital Publishing Institute, 2023.
    • الموضوع:
      2023
    • نبذة مختصرة :
      Gamma imagers play a key role in both industrial and medical applications. Modern gamma imagers typically employ iterative reconstruction methods in which the system matrix (SM) is a key component to obtain high-quality images. An accurate SM could be acquired from an experimental calibration step with a point source across the FOV, but at a cost of long calibration time to suppress noise, posing challenges to real-world applications. In this work, we propose a time-efficient SM calibration approach for a 4π-view gamma imager with short-time measured SM and deep-learning-based denoising. The key steps include decomposing the SM into multiple detector response function (DRF) images, categorizing DRFs into multiple groups with a self-adaptive K-means clustering method to address sensitivity discrepancy, and independently training separate denoising deep networks for each DRF group. We investigate two denoising networks and compare them against a conventional Gaussian filtering method. The results demonstrate that the denoised SM with deep networks faithfully yields a comparable imaging performance with the long-time measured SM. The SM calibration time is reduced from 1.4 h to 8 min. We conclude that the proposed SM denoising approach is promising and effective in enhancing the productivity of the 4π-view gamma imager, and it is also generally applicable to other imaging systems that require an experimental calibration step.
    • File Description:
      application/pdf
    • ISSN:
      1424-8220
    • الرقم المعرف:
      10.3390/s23052689
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....d9328227eaace3cc53d1990ca532692d