Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Antiviral type III CRISPR signalling via conjugation of ATP and SAM

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      BBSRC; European Research Council; University of St Andrews.St Andrews Bioinformatics Unit; University of St Andrews.Biomedical Sciences Research Complex; University of St Andrews.School of Biology; University of St Andrews.Institute of Behavioural and Neural Sciences; University of St Andrews. St Andrews Bioinformatics Unit; University of St Andrews. Biomedical Sciences Research Complex; University of St Andrews. School of Biology; University of St Andrews. Institute of Behavioural and Neural Sciences
    • بيانات النشر:
      Springer Science and Business Media LLC, 2023.
    • الموضوع:
      2023
    • نبذة مختصرة :
      CRISPR systems are widespread in the prokaryotic world, providing adaptive immunity against mobile genetic elements1,2. Type III CRISPR systems, with the signature gene cas10, use CRISPR RNA to detect non-self RNA, activating the enzymatic Cas10 subunit to defend the cell against mobile genetic elements either directly, via the integral histidine–aspartate (HD) nuclease domain3–5 or indirectly, via synthesis of cyclic oligoadenylate second messengers to activate diverse ancillary effectors6–9. A subset of type III CRISPR systems encode an uncharacterized CorA-family membrane protein and an associated NrN family phosphodiesterase that are predicted to function in antiviral defence. Here we demonstrate that the CorA-associated type III-B (Cmr) CRISPR system from Bacteroides fragilis provides immunity against mobile genetic elements when expressed in Escherichia coli. However, B. fragilis Cmr does not synthesize cyclic oligoadenylate species on activation, instead generating S-adenosyl methionine (SAM)-AMP (SAM is also known as AdoMet) by conjugating ATP to SAM via a phosphodiester bond. Once synthesized, SAM-AMP binds to the CorA effector, presumably leading to cell dormancy or death by disruption of the membrane integrity. SAM-AMP is degraded by CRISPR-associated phosphodiesterases or a SAM-AMP lyase, potentially providing an ‘off switch’ analogous to cyclic oligoadenylate-specific ring nucleases10. SAM-AMP thus represents a new class of second messenger for antiviral signalling, which may function in different roles in diverse cellular contexts.
    • File Description:
      application/pdf; fulltext
    • ISSN:
      1476-4687
      0028-0836
    • الرقم المعرف:
      10.1038/s41586-023-06620-5
    • Rights:
      CC BY
      URL: http://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (http://creativecommons.org/licenses/by/4.0/) .
    • الرقم المعرف:
      edsair.doi.dedup.....d129f8f1a311c0c6941b536e637a3742