نبذة مختصرة : Background The global over-reliance on non-renewable fossil fuels has led to the emission of greenhouse gases, creating a critical global environmental challenge. There is an urgent need for alternative solutions like biofuels. Advanced biofuel is a renewable sustainable energy generated from lignocellulosic plant materials, which can significantly contribute to mitigating CO2 emissions. Microbial Carbohydrate Active Enzymes (CAZymes) are the most crucial enzymes for the generation of sustainable biofuel energy. The present study designed shotgun metagenomics approaches to assemble, predict, and annotate, aiming to gain an insight into the taxonomic diversity, annotate CAZymes, and identify carbohydrate hydrolyzing CAZymes from microbiomes in Menagesha suba forest soil for the first time. Results The microbial diversity based on small subunit (SSU) rRNA analysis revealed the dominance of the bacterial domain representing 81.82% and 92.31% in the studied samples. Furthermore, the phylum composition result indicated the dominance of the phyla Proteobacteria (23.08%, 27.27%), Actinobacteria (11.36%, 20.51%), and Acidobacteria (10.26%, 15.91%). The study also identified unassigned bacteria which might have a unique potential for biopolymer hydrolysis. The metagenomic study revealed that 100,244 and 65,356 genes were predicted from the two distinct samples. A total number of 1806 CAZyme genes were identified, among annotated CAZymes, 758 had a known enzyme assigned to CAZymes. Glycoside hydrolases (GHs) CAZyme family contained most of the CAZyme genes with known enzymes such as β-glucosidase, endo-β-1,4-mannanase, exo-β-1,4-glucanase, α-L-arabinofuranosidase and oligoxyloglucan reducing end-specific cellobiohydrolase. On the other hand, 1048 of the identified CAZyme genes were putative CAZyme genes with unknown enzymatical activity and the majority of which belong to the GHs family. Conclusions In general, the identified putative CAZymes genes open up an opportunity for the discovery of new enzymes responsible for hydrolyzing biopolymers utilized for biofuel energy generation. This finding is used as a first-hand piece of evidence to serve as a benchmark for further and comprehensive studies to unveil novel classes of bio-economically valuable genes and their encoded products.
Rights: CC BY
URL: http://creativecommons.org/licenses/by-nc-nd/4.0/Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it.The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ (http://creativecommons.org/licenses/by-nc-nd/4.0/) .
No Comments.