Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Creating a Dataset for the Detection and Segmentation of Degradation Phenomena in Notre-Dame de Paris

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Equipes Traitement de l'Information et Systèmes (ETIS - UMR 8051); Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY); Laboratoire sciences et technologies de l'information géographique (LaSTIG); Ecole des Ingénieurs de la Ville de Paris (EIVP)-École nationale des sciences géographiques (ENSG); Institut National de l'Information Géographique et Forestière [IGN] (IGN)-Université Gustave Eiffel-Institut National de l'Information Géographique et Forestière [IGN] (IGN)-Université Gustave Eiffel; Modèles et simulations pour l'Architecture et le Patrimoine (MAP - UPR 2002); Centre National de la Recherche Scientifique (CNRS); ACM Multimedia; GT Données numériques / Chantier scientifique Notre-Dame de Paris (CNRS/MC); ANR-17-EURE-0021,PSGS-HCH,Paris Seine Graduate School of Humanities Creation Heritage(2017); European Project: 101055423,n-Dame_Heritage; Fondation des Sciences du Patrimoine; LabEx PATRIMA; ACM Multimedia 2024
    • بيانات النشر:
      ACM, 2024.
    • الموضوع:
      2024
    • نبذة مختصرة :
      After the fire that destroyed most of the Notre-Dame de Paris cathedral's roof and vaults, scientists gathered in an effort to help the restoration process of the cathedral. Several digital methods and heterogeneous data acquisitions were introduced in the process, including many images and annotations. Part of this data focuses on stone degradation phenomena, a crucial element when evaluating the damages caused by the fire and the state of the cathedral before the restoration started. In this paper, we present the first implementation of a dataset creation pipeline with the aim of training AI models to automatically detect and segment stone alteration patterns in images taken in the context of the restoration of Cultural Heritage buildings. Our resulting dataset will be improved in a near future with more data, while conforming with the ambition to provide our experts and researchers with reliable, structured data.
      International audience
    • الرقم المعرف:
      10.1145/3689094.3689473
    • الرقم المعرف:
      edsair.doi.dedup.....c6a1a52d50b971f0abdbd62c324cf241