Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Genomic analysis of the hydrocarbon-producing, cellulolytic, endophytic fungus Ascocoryne sarcoides

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Public Library of Science (PLoS), 2012.
    • الموضوع:
      2012
    • نبذة مختصرة :
      The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for transportation fuels. Endophytes represent a promising group of organisms, as they are a mostly untapped reservoir of metabolic diversity. They are often able to degrade cellulose, and they can produce an extraordinary diversity of metabolites. The filamentous fungal endophyte Ascocoryne sarcoides was shown to produce potential-biofuel metabolites when grown on a cellulose-based medium; however, the genetic pathways needed for this production are unknown and the lack of genetic tools makes traditional reverse genetics difficult. We present the genomic characterization of A. sarcoides and use transcriptomic and metabolomic data to describe the genes involved in cellulose degradation and to provide hypotheses for the biofuel production pathways. In total, almost 80 biosynthetic clusters were identified, including several previously found only in plants. Additionally, many transcriptionally active regions outside of genes showed condition-specific expression, offering more evidence for the role of long non-coding RNA in gene regulation. This is one of the highest quality fungal genomes and, to our knowledge, the only thoroughly annotated and transcriptionally profiled fungal endophyte genome currently available. The analyses and datasets contribute to the study of cellulose degradation and biofuel production and provide the genomic foundation for the study of a model endophyte system.
      Author Summary A renewable source of energy is a pressing global need. The biological conversion of lignocellulose to biofuels by microorganisms presents a promising avenue, but few organisms have been studied thoroughly enough to develop the genetic tools necessary for rigorous experimentation. The filamentous-fungal endophyte A. sarcoides produces metabolites when grown on a cellulose-based medium that include eight-carbon volatile organic compounds, which are potential biofuel targets. Here we use broadly applicable methods including genomics, transcriptomics, and metabolomics to explore the biofuel production of A. sarcoides. These data were used to assemble the genome into 16 scaffolds, to thoroughly annotate the cellulose-degradation machinery, and to make predictions for the production pathway for the eight-carbon volatiles. Extremely high expression of the gene swollenin when grown on cellulose highlights the importance of accessory proteins in addition to the enzymes that catalyze the breakdown of the polymers. Correlation of the production of the eight-carbon biofuel-like metabolites with the expression of lipoxygenase pathway genes suggests the catabolism of linoleic acid as the mechanism of eight-carbon compound production. This is the first fungal genome to be sequenced in the family Helotiaceae, and A. sarcoides was isolated as an endophyte, making this work also potentially useful in fungal systematics and the study of plant–fungus relationships.
    • ISSN:
      1553-7404
      1553-7390
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....c210ef591157a997f046b239c49e0e07