Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Genome wide analysis reveals heparan sulfate epimerase modulates TDP-43 proteinopathy

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Public Library of Science, 2019.
    • الموضوع:
      2019
    • نبذة مختصرة :
      Pathological phosphorylated TDP-43 protein (pTDP) deposition drives neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). However, the cellular and genetic mechanisms at work in pathological TDP-43 toxicity are not fully elucidated. To identify genetic modifiers of TDP-43 neurotoxicity, we utilized a Caenorhabditis elegans model of TDP-43 proteinopathy expressing human mutant TDP-43 pan-neuronally (TDP-43 tg). In TDP-43 tg C. elegans, we conducted a genome-wide RNAi screen covering 16,767 C. elegans genes for loss of function genetic suppressors of TDP-43-driven motor dysfunction. We identified 46 candidate genes that when knocked down partially ameliorate TDP-43 related phenotypes; 24 of these candidate genes have conserved homologs in the human genome. To rigorously validate the RNAi findings, we crossed the TDP-43 transgene into the background of homozygous strong genetic loss of function mutations. We have confirmed 9 of the 24 candidate genes significantly modulate TDP-43 transgenic phenotypes. Among the validated genes we focused on, one of the most consistent genetic modifier genes protecting against pTDP accumulation and motor deficits was the heparan sulfate-modifying enzyme hse-5, the C. elegans homolog of glucuronic acid epimerase (GLCE). We found that knockdown of human GLCE in cultured human cells protects against oxidative stress induced pTDP accumulation. Furthermore, expression of glucuronic acid epimerase is significantly decreased in the brains of FTLD-TDP cases relative to normal controls, demonstrating the potential disease relevance of the candidate genes identified. Taken together these findings nominate glucuronic acid epimerase as a novel candidate therapeutic target for TDP-43 proteinopathies including ALS and FTLD-TDP.
      Author summary The protein TDP-43 forms aggregates in disease-affected neurons in patients with ALS and FTLD-TDP. In addition, mutations in the human gene coding for TDP-43 can cause inherited ALS. By expressing human mutant TDP-43 protein in C. elegans neurons, we have modelled aspects of ALS pathobiology. This animal model exhibits severe motor dysfunction, progressive neurodegeneration, and accumulation of abnormally modified TDP-43 protein. To identify genes controlling TDP-43 neurotoxicity in C. elegans, we have conducted a genome-wide reverse genetic screen and found 46 genes that participate in TDP-43 neurotoxicity. We demonstrated that one of them, glucuronic acid epimerase, is decreased in patients with FTLD-TDP suggesting inhibitors of glucuronic acid epimerase could have therapeutic value for ALS and FTLD.
    • ISSN:
      1553-7404
      1553-7390
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....adf8ed3b5e2c15922cfbe2afc4e59176