Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Immunity in Society: Diverse Solutions to Common Problems

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Public Library of Science, 2012.
    • الموضوع:
      2012
    • نبذة مختصرة :
      Social contact with fungus-exposed ants leads to pathogen transfer to healthy nest-mates, causing low-level infections. These micro-infections promote pathogen-specific immune gene expression and protective immunization of nest-mates.
      Due to the omnipresent risk of epidemics, insect societies have evolved sophisticated disease defences at the individual and colony level. An intriguing yet little understood phenomenon is that social contact to pathogen-exposed individuals reduces susceptibility of previously naive nestmates to this pathogen. We tested whether such social immunisation in Lasius ants against the entomopathogenic fungus Metarhizium anisopliae is based on active upregulation of the immune system of nestmates following contact to an infectious individual or passive protection via transfer of immune effectors among group members—that is, active versus passive immunisation. We found no evidence for involvement of passive immunisation via transfer of antimicrobials among colony members. Instead, intensive allogrooming behaviour between naive and pathogen-exposed ants before fungal conidia firmly attached to their cuticle suggested passage of the pathogen from the exposed individuals to their nestmates. By tracing fluorescence-labelled conidia we indeed detected frequent pathogen transfer to the nestmates, where they caused low-level infections as revealed by growth of small numbers of fungal colony forming units from their dissected body content. These infections rarely led to death, but instead promoted an enhanced ability to inhibit fungal growth and an active upregulation of immune genes involved in antifungal defences (defensin and prophenoloxidase, PPO). Contrarily, there was no upregulation of the gene cathepsin L, which is associated with antibacterial and antiviral defences, and we found no increased antibacterial activity of nestmates of fungus-exposed ants. This indicates that social immunisation after fungal exposure is specific, similar to recent findings for individual-level immune priming in invertebrates. Epidemiological modeling further suggests that active social immunisation is adaptive, as it leads to faster elimination of the disease and lower death rates than passive immunisation. Interestingly, humans have also utilised the protective effect of low-level infections to fight smallpox by intentional transfer of low pathogen doses (“variolation” or “inoculation”).
      Author Summary Close social contact facilitates pathogen transmission in societies, often causing epidemics. In contrast to this, we show that limited transmission of a fungal pathogen in ant colonies can be beneficial for the host, because it promotes “social immunisation” of healthy group members. We found that ants exposed to the fungus are heavily groomed by their healthy nestmates. Grooming removes a significant number of fungal conidiospores from the body surface of exposed ants and reduces their risk of falling sick. At the same time, previously healthy nestmates are themselves exposed to a small number of conidiospores, triggering low-level infections. These micro-infections are not deadly, but result in upregulated expression of a specific set of immune genes and pathogen-specific protective immune stimulation. Pathogen transfer by social interactions is therefore the underlying mechanism of social immunisation against fungal infections in ant societies. There is a similarity between such natural social immunisation and human efforts to induce immunity against deadly diseases, such as smallpox. Before vaccination with dead or attenuated strains was invented, immunity in human societies was induced by actively transferring low-level infections (“variolation”), just like in ants.
    • File Description:
      text; application/pdf
    • ISSN:
      1545-7885
      1544-9173
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....a94d1349bf263fc5a902ba2e9b1073fb