Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Mutations of RagA GTPase in mTORC1 Pathway Are Associated with Autosomal Dominant Cataracts

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Public Library of Science (PLoS), 2016.
    • الموضوع:
      2016
    • نبذة مختصرة :
      Cataracts are a significant public health problem with no proven methods for prevention. Discovery of novel disease mechanisms to delineate new therapeutic targets is of importance in cataract prevention and therapy. Herein, we report that mutations in the RagA GTPase (RRAGA), a key regulator of the mechanistic rapamycin complex 1 (mTORC1), are associated with autosomal dominant cataracts. We performed whole exome sequencing in a family with autosomal dominant juvenile-onset cataracts, and identified a novel p.Leu60Arg mutation in RRAGA that co-segregated with the disease, after filtering against the dbSNP database, and at least 123,000 control chromosomes from public and in-house exome databases. In a follow-up direct screening of RRAGA in another 22 families and 142 unrelated patients with congenital or juvenile-onset cataracts, RRAGA was found to be mutated in two unrelated patients (p.Leu60Arg and c.-16G>A respectively). Functional studies in human lens epithelial cells revealed that the RRAGA mutations exerted deleterious effects on mTORC1 signaling, including increased relocation of RRAGA to the lysosomes, up-regulated mTORC1 phosphorylation, down-regulated autophagy, altered cell growth or compromised promoter activity. These data indicate that the RRAGA mutations, associated with autosomal dominant cataracts, play a role in the disease by acting through disruption of mTORC1 signaling.
      Author Summary A group of guanine nucleotide-binding molecules called Rag GTPases are known to play a crucial role in regulation of mTORC1 signaling cascade. In the current study, whole exome sequencing has led to the identification of the RagA GTPase (RRAGA) gene for cataracts and we proceeded to study properties of the RRAGA protein. We captured and sequenced the whole exome for four affected patients from a family with autosomal dominant juvenile-onset posterior cataracts, and found a novel rare mutation in RagA GTPase (RRAGA). To validate this finding, we then sequenced more families and patients, and observed RRAGA mutations in unrelated patients with related phenotypes, suggesting that RRAGA could be mutated in congenital and juvenile-onset cataracts. We further demonstrated supporting evidence that in human lens epithelial cells the RRAGA mutations exerted deleterious effects on relocation of RRAGA to the lysosomes, mTORC1 phosphorylation, autophagy and cell growth. This study gives important new insight into the roles of RRAGA and mTROC1 signaling in the etiology of cataracts.
    • ISSN:
      1553-7404
      1553-7390
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....a292c1ff2fd1e809fca85ffd4b107eb2