Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Infection with MERS-CoV causes lethal pneumonia in the common marmoset

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Plazi
    • بيانات النشر:
      Public Library of Science (PLoS), 2014.
    • الموضوع:
      2014
    • نبذة مختصرة :
      The availability of a robust disease model is essential for the development of countermeasures for Middle East respiratory syndrome coronavirus (MERS-CoV). While a rhesus macaque model of MERS-CoV has been established, the lack of uniform, severe disease in this model complicates the analysis of countermeasure studies. Modeling of the interaction between the MERS-CoV spike glycoprotein and its receptor dipeptidyl peptidase 4 predicted comparable interaction energies in common marmosets and humans. The suitability of the marmoset as a MERS-CoV model was tested by inoculation via combined intratracheal, intranasal, oral and ocular routes. Most of the marmosets developed a progressive severe pneumonia leading to euthanasia of some animals. Extensive lesions were evident in the lungs of all animals necropsied at different time points post inoculation. Some animals were also viremic; high viral loads were detected in the lungs of all infected animals, and total RNAseq demonstrated the induction of immune and inflammatory pathways. This is the first description of a severe, partially lethal, disease model of MERS-CoV, and as such will have a major impact on the ability to assess the efficacy of vaccines and treatment strategies as well as allowing more detailed pathogenesis studies.
      Author Summary The development of vaccines and treatment strategies is aided by robust animal disease models that accurately depict the illness that is observed in humans. Here we describe a new, improved model for MERS-CoV using the common marmoset, whereby the severe, and even lethal, illness that has been observed in many human cases is recapitulated. Prior to the development of this model, the only available animal models for MERS-CoV infection were the rhesus macaque and a mouse model that requires adenovirus-transduced expression of the human version of the protein required for virus entry. The rhesus macaque model more closely mimics the mild to moderate disease observed in some patients—mainly those without significant comorbidities. The increased severity of illness in the common marmoset model is an important advance in the ability to evaluate potential therapeutic agents against MERS-CoV, as discrimination between successfully treated and control animals should be more apparent. In addition, the closer models recapitulate the disease observed in humans, the more likely findings can be eventually translated into use in humans.
    • ISSN:
      1553-7374
      1553-7366
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....9b3768fd0245fbf8caebbdfe9d3163c6