Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

LARGE glycans on dystroglycan function as a tunable matrix scaffold to prevent dystrophy

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Springer Science and Business Media LLC, 2013.
    • الموضوع:
      2013
    • نبذة مختصرة :
      The dense glycan coat that surrounds every cell is essential for cellular development and physiological function1, and it is becoming appreciated that its composition is highly dynamic. Post-translational addition of the polysaccharide repeating unit [-3-xylose-α1,3-glucuronic acid-β1-]n by like-acetylglucosaminyltransferase (LARGE) is required for the glycoprotein dystroglycan to function as a receptor for proteins in the extracellular matrix2,3. Reductions in the amount of [-3-xylose-α1,3-glucuronic acid-β1-]n (hereafter referred to as LARGE-glycan) on dystroglycan result in heterogeneous forms of muscular dystrophy4. However, neither patient nor mouse studies has revealed a clear correlation between glycosylation status and phenotype5,6. This disparity can be attributed to our lack of knowledge of the cellular function of the LARGE-glycan repeat. Here we show that coordinated upregulation of Large and dystroglycan in differentiating mouse muscle facilitates rapid extension of LARGE-glycan repeat chains. Using synthesized LARGE-glycan repeats we show a direct correlation between LARGE-glycan extension and its binding capacity for extracellular matrix ligands. Blocking Large upregulation during muscle regeneration results in the synthesis of dystroglycan with minimal LARGE-glycan repeats in association with a less compact basement membrane, immature neuromuscular junctions and dysfunctional muscle predisposed to dystrophy. This was consistent with the finding that patients with increased clinical severity of disease have fewer LARGE-glycan repeats. Our results reveal that the LARGE-glycan of dystroglycan serves as a tunable extracellular matrix protein scaffold, the extension of which is required for normal skeletal muscle function.
    • ISSN:
      1476-4687
      0028-0836
    • الرقم المعرف:
      10.1038/nature12605
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....9931837d859f9e0f5cfb5cb77a20c402