Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Efficient Convex Optimization Requires Superlinear Memory

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Preprint
    • بيانات النشر:
      Association for Computing Machinery (ACM), 2024.
    • الموضوع:
      2024
    • نبذة مختصرة :
      We show that any memory-constrained, first-order algorithm which minimizesd-dimensional, 1-Lipschitz convex functions over the unit ball to 1/poly(d) accuracy using at most d1.25 - δbits of memory must make at least\(\tilde{\Omega }(d^{1 + (4/3)\delta })\)first-order queries (for any constant\(\delta \in [0, 1/4]\)). Consequently, the performance of such memory-constrained algorithms are at least a polynomial factor worse than the optimal Õ(d) query bound for this problem obtained by cutting plane methods that use Õ(d2) memory. This resolves one of the open problems in the COLT 2019 open problem publication of Woodworth and Srebro.
    • ISSN:
      1557-735X
      0004-5411
    • الرقم المعرف:
      10.1145/3689208
    • الرقم المعرف:
      10.48550/arxiv.2203.15260
    • Rights:
      arXiv Non-Exclusive Distribution
    • الرقم المعرف:
      edsair.doi.dedup.....984ab53a01050be3480f722e43994480