Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Purely combinatorial approximation algorithms for maximum k-vertex cover in bipartite graphs

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      RS: FSE DACS NSO; DKE Scientific staff; Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE); Université Paris Dauphine-PSL; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS); Recherche Opérationnelle (RO); LIP6; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS); Institut de Recherche Dupuy de Lôme (IRDL); Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Centre National de la Recherche Scientifique (CNRS)
    • الموضوع:
      2018
    • نبذة مختصرة :
      We study the polynomial time approximation of the NP-hard max k - vertex cover problem in bipartite graphs and propose purely combinatorial approximation algorithms. The main result of the paper is a simple combinatorial algorithm and a computer-assisted analysis of its approximation guarantee giving strong evidence that the worst approximation ratio achieved is bounded below by 0.821. We also study two simpler strategies with provable approximation ratios of 2 3 and 34 47 ≈ 0 . 72 respectively that already beat the only such known algorithm, namely the greedy approach which guarantees ratio ( 1 − 1 e ) ≈ 0 . 632 . Our principal motivation is to bring a satisfactory answer in the following question: to what extent combinatorial methods for max k - vertex cover compete with linear programming ones?
    • ISSN:
      1572-5286
      1873-636X
    • الرقم المعرف:
      10.1016/j.disopt.2017.09.001⟩
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....7dd781e68b00c5a33bc31d91ef28b861