نبذة مختصرة : We study the query complexity of finding a Tarski fixed point over the $k$-dimensional grid $\{1,\ldots,n\}^k$. Improving on the previous best upper bound of $\smash{O(\log^{\lceil 2k/3\rceil} n)}$ [FPS20], we give a new algorithm with query complexity $\smash{O(\log^{\lceil (k+1)/2\rceil} n)}$. This is based on a novel decomposition theorem about a weaker variant of the Tarski fixed point problem, where the input consists of a monotone function $f:[n]^k\rightarrow [n]^k$ and a monotone sign function $b:[n]^k\rightarrow \{-1,0,1\}$ and the goal is to find an $x\in [n]^k$ that satisfies $either$ $f(x)\preceq x$ and $b(x)\le 0$ $or$ $f(x)\succeq x$ and $b(x)\ge 0$.
To appear in EC 2022
No Comments.