Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Discovery of Phenylcarbamoylazinane-1,2,4-Triazole Amides Derivatives as the Potential Inhibitors of Aldo-Keto Reductases (AKR1B1 & AKRB10): Potential Lead Molecules for Treatment of Colon Cancer

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Multidisciplinary Digital Publishing Institute, 2022.
    • الموضوع:
      2022
    • نبذة مختصرة :
      Both members of the aldo-keto reductases (AKRs) family, AKR1B1 and AKR1B10, are over-expressed in various type of cancer, making them potential targets for inflammation-mediated cancers such as colon, lung, breast, and prostate cancers. This is the first comprehensive study which focused on the identification of phenylcarbamoylazinane-1, 2,4-triazole amides (7a-o) as the inhibitors of aldo-keto reductases (AKR1B1, AKR1B10) via detailed computational analysis. Firstly, the stability and reactivity of compounds were determined by using the Guassian09 programme in which the density functional theory (DFT) calculations were performed by using the B3LYP/SVP level. Among all the derivatives, the 7d, 7e, 7f, 7h, 7j, 7k, and 7m were found chemically reactive. Then the binding interactions of the optimized compounds within the active pocket of the selected targets were carried out by using molecular docking software: AutoDock tools and Molecular operation environment (MOE) software, and during analysis, the Autodock (academic software) results were found to be reproducible, suggesting this software is best over the MOE (commercial software). The results were found in correlation with the DFT results, suggesting 7d as the best inhibitor of AKR1B1 with the energy value of -49.40 kJ/mol and 7f as the best inhibitor of AKR1B10 with the energy value of -52.84 kJ/mol. The other potent compounds also showed comparable binding energies. The best inhibitors of both targets were validated by the molecular dynamics simulation studies where the root mean square value of Funding Agencies|Princess Nourah bint Abdulrahman University [PNURSP2022R12]
    • File Description:
      application/pdf
    • ISSN:
      1420-3049
    • الرقم المعرف:
      10.3390/molecules27133981
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....7c7516f4b07c0de810b04d66df3b8176