Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Prophylactic and therapeutic efficacy of human monoclonal antibodies against H5N1 influenza

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Other departments
    • بيانات النشر:
      Public Library of Science (PLoS), 2007.
    • الموضوع:
      2007
    • نبذة مختصرة :
      Background New prophylactic and therapeutic strategies to combat human infections with highly pathogenic avian influenza (HPAI) H5N1 viruses are needed. We generated neutralizing anti-H5N1 human monoclonal antibodies (mAbs) and tested their efficacy for prophylaxis and therapy in a murine model of infection. Methods and Findings Using Epstein-Barr virus we immortalized memory B cells from Vietnamese adults who had recovered from infections with HPAI H5N1 viruses. Supernatants from B cell lines were screened in a virus neutralization assay. B cell lines secreting neutralizing antibodies were cloned and the mAbs purified. The cross-reactivity of these antibodies for different strains of H5N1 was tested in vitro by neutralization assays, and their prophylactic and therapeutic efficacy in vivo was tested in mice. In vitro, mAbs FLA3.14 and FLD20.19 neutralized both Clade I and Clade II H5N1 viruses, whilst FLA5.10 and FLD21.140 neutralized Clade I viruses only. In vivo, FLA3.14 and FLA5.10 conferred protection from lethality in mice challenged with A/Vietnam/1203/04 (H5N1) in a dose-dependent manner. mAb prophylaxis provided a statistically significant reduction in pulmonary virus titer, reduced associated inflammation in the lungs, and restricted extrapulmonary dissemination of the virus. Therapeutic doses of FLA3.14, FLA5.10, FLD20.19, and FLD21.140 provided robust protection from lethality at least up to 72 h postinfection with A/Vietnam/1203/04 (H5N1). mAbs FLA3.14, FLD21.140 and FLD20.19, but not FLA5.10, were also therapeutically active in vivo against the Clade II virus A/Indonesia/5/2005 (H5N1). Conclusions These studies provide proof of concept that fully human mAbs with neutralizing activity can be rapidly generated from the peripheral blood of convalescent patients and that these mAbs are effective for the prevention and treatment of H5N1 infection in a mouse model. A panel of neutralizing, cross-reactive mAbs might be useful for prophylaxis or adjunctive treatment of human cases of H5N1 influenza.
      Cameron Simmons and colleagues provide proof of concept that human monoclonal antibodies with neutralizing activity can be rapidly generated from peripheral blood of convalescent patients and are effective in preventing and treating H5N1 infection in a mouse model.
      Editors' Summary Background. Every year, millions of people catch influenza, a viral disease of the nose, throat, and airways. Although most recover, influenza outbreaks (epidemics) kill about half a million people annually. Epidemics occur because small but frequent changes in the viral proteins (antigens) to which the immune system responds mean that an immune response produced one year provides only partial protection against influenza the next year. Human flu viruses also occasionally appear that contain major antigenic changes. People have little or no immunity to such viruses (which often originate in animals or birds), so these viruses can start deadly pandemics—global epidemics. The Spanish flu pandemic in 1918/9, Asian flu in 1957, and Hong Kong flu in 1968 all killed millions. Experts believe that another pandemic is overdue and may be triggered by the avian H5N1 influenza virus—the name indicates that this bird virus carries type 5 hemagglutinin and type 1 neuraminidase, the two major flu antigens. H5N1, which rapidly kills infected birds, is now present in flocks around the world and, since 1997, it has caused 258 cases of human flu and 153 deaths. People have caught H5N1 through close contact with infected birds but, luckily, H5N1 rarely passes between people. Why Was This Study Done? H5N1 might acquire the ability to move between people and start a human influenza pandemic at any time. Some of the H5N1 viruses are resistant to the antiviral drugs used to treat flu and there will inevitably be a lag of some months between the emergence of a human pandemic H5N1 strain and the bulk production of a vaccine effective against it. Thus, new preventative and therapeutic strategies are needed to combat human infections with H5N1. One possibility is passive immunotherapy—treating people with antibodies (proteins that recognize antigens) that can stop H5N1 from infecting cells (so-called neutralizing antibodies). In this study, the researchers have generated neutralizing human monoclonal antibodies (laboratory-produced preparations that contain one type of human antibody) and tested their ability to halt viral growth in mice infected with H5N1. What Did the Researchers Do and Find? Patients who have survived infection with H5N1 make neutralizing antibodies, so the researchers isolated and immortalized the immune cells making these antibodies from the patients' blood. They grew up each cell separately and purified the antibody that the cells made. These monoclonal antibodies were then tested for their ability to neutralize H5N1 and other flu viruses in the laboratory. The researchers identified several that neutralized the H5N1 strain with which the patients were originally infected and chose two for further study. In the test tube, the four antibodies neutralized closely related H5N1 viruses and an H5N1 virus from a different lineage (clade) that has also caused human disease, in addition to the original H5N1 virus, although with different efficacies. In mice, the antibodies provided protection from infection with the original virus when given a day before or one to three days after infection. Three antibodies also partly protected the mice against H5N1 from a different clade. Finally, the researchers showed that the antibodies protected mice by limiting viral replication, by lessening the deleterious effects of the virus in the lungs, and by stopping viral spread out of the lungs. What Do These Findings Mean? These results indicate that passive immunotherapy with human monoclonal antibodies could help to combat avian H5N1 if (or when) it starts a human pandemic. Passive immunotherapy is already used to prevent infections with several other viruses. In addition, a crude form of the approach—early treatment of patients with plasma (the liquid portion of blood) from convalescent patients—halved the death rate during the Spanish flu pandemic. Large amounts of pure monoclonal antibodies can be relatively easily made for clinical use, and this study indicates that some monoclonal antibodies neutralize H5N1 viruses from different clades. The researchers sound a note of caution, however: Before passive immunotherapy can help to halt an H5N1 pandemic, they warn, the monoclonal antibodies will have to be tested to see whether they can neutralize not only all the currently circulating H5N1 viruses but also any emerging pandemic versions, which might be antigenically distinct. Additional Information. Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040178. US Centers for Disease Control and Prevention information about influenza for patients and professionals including key facts about avian influenza US National Institute of Allergy and Infectious Disease feature on seasonal, avian, and pandemic flu World Health Organization factsheet on influenza and information on avian influenza, including latest figures for confirmed human cases UK Health Protection Agency information on seasonal, avian, and pandemic influenza Wikipedia pages on passive immunity and monoclonal antibodies (note: Wikipedia is an online encyclopedia that anyone can edit)
    • ISSN:
      1549-1676
      1549-1277
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....79f1ebfa09c2ed39539590391e797325