Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Unique patterns of trimethylation of histone H3 lysine 4 are prone to changes during aging in Caenorhabditis elegans somatic cells

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Public Library of Science, 2018.
    • الموضوع:
      2018
    • نبذة مختصرة :
      Tri-methylation on histone H3 lysine 4 (H3K4me3) is associated with active gene expression but its regulatory role in transcriptional activation is unclear. Here we used Caenorhabditis elegans to investigate the connection between H3K4me3 and gene expression regulation during aging. We uncovered around 30% of H3K4me3 enriched regions to show significant and reproducible changes with age. We further showed that these age-dynamic H3K4me3 regions largely mark gene-bodies and are acquired during adult stages. We found that these adult-specific age-dynamic H3K4me3 regions are correlated with gene expression changes with age. In contrast, H3K4me3 marking established during developmental stages remained largely stable with age, even when the H3K4me3 associated genes exhibited RNA expression changes during aging. Importantly, the genes associated with changes in H3K4me3 and RNA levels with age are enriched for functional groups commonly implicated in aging biology. Therefore, our findings suggested divergent roles of H3K4me3 in gene expression regulation during aging, with important implications on aging-dependent pathophysiologies.
      Author summary Histone modifications, the specific chemical modifications on histone proteins, are key for regulating the packing of DNA, and thus have important influence on diverse biological processes. An intensely studied function of histone modifications is their contribution to regulating gene expression. Recent studies in diverse model organisms demonstrated that the global alterations of particular histone modifications, for instance H3K4me3, extend the lifespan of the organism. However, the underlying molecular mechanisms remain largely unclear. In this study, we monitored whether and how the genome-wide pattern of the histone modification H3K4me3 changes during aging in the somatic cells of the model organism C. elegans. We identified interesting and non-conventional patterns of H3K4me3, which span gene-bodies and are acquired during adulthood, that are particularly prone to changes with aging. This is contrasted to the well-studied H3K4me3 patterns that span transcriptional start sites and 5’ promoter regions and are established early during development, which remain stable with age. Consistent with the close association between H3K4me3 marking and active transcription, we observed that the age-dynamic H3K4me3 markings are highly correlated with corresponding RNA expression changes. Importantly, the genes that are associated with both H3K4me3 and RNA expression changes with age are over-represented for functional groups commonly implicated in aging biology. In summary, our findings revealed a lesser known pattern of H3K4me3 modification that can have important biological roles in aging.
    • ISSN:
      1553-7404
      1553-7390
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....7309922f4955a3c4446520991de00519