نبذة مختصرة : Recent research shows that the brittleness of rock is closely related to the initiation and propagation of internal microcracks, but there are few brittleness evaluation indices considering the characteristics of rock initiation. Based on the theoretical analysis of brittleness and the characteristics of rock initiation, this study proposes an evaluation method of rock brittleness based on the prepeak crack initiation and postpeak stress drop characteristics. First, based on the description and definition of brittleness by George Tarasov and Potvin et al., the feasibility of an evaluation method based on the prepeak crack initiation and postpeak stress drop is theoretically analyzed. Second, the component Bi representing the prepeak brittleness of rock and component Bii representing the prepeak brittleness of rock are constructed, and the product of the two is the brittleness index BI, representing the prepeak crack initiation and postpeak stress drop. Finally, experimental tests of granite and marble were conducted to evaluate the new index, and the brittleness indices of different methods are calculated and compared. The results show that, like other brittleness indices (B1∼B5), the brittleness index BI can effectively reflect the effects of different confining pressures and loading modes on rock brittleness. The brittleness of marble decreases with increasing confining pressure from 5 MPa to 35 MPa. At a confining pressure of 5 MPa, the brittleness of granite during a triaxial unloading test is greater than that during a triaxial compression test. The calculated results are consistent with the experimental results. By tests and comparison results, the reliability of this evaluation method was verified, which provides a way to evaluate rock brittleness from the perspective of crack initiation and is helpful to enrich the analysis and evaluation of rock brittleness in the laboratory.
No Comments.