Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Quasipolynomial-time algorithms for Gibbs point processes

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Preprint
    • بيانات النشر:
      Cambridge University Press (CUP), 2023.
    • الموضوع:
      2023
    • نبذة مختصرة :
      We demonstrate a quasipolynomial-time deterministic approximation algorithm for the partition function of a Gibbs point process interacting via a stable potential. This result holds for all activities $\lambda$ for which the partition function satisfies a zero-free assumption in a neighbourhood of the interval $[0,\lambda ]$ . As a corollary, for all finiterange stable potentials, we obtain a quasipolynomial-time deterministic algorithm for all $\lambda \lt 1/(e^{B + 1} \hat C_\phi )$ where $\hat C_\phi$ is a temperedness parameter and $B$ is the stability constant of $\phi$ . In the special case of a repulsive potential such as the hard-sphere gas we improve the range of activity by a factor of at least $e^2$ and obtain a quasipolynomial-time deterministic approximation algorithm for all $\lambda \lt e/\Delta _\phi$ , where $\Delta _\phi$ is the potential-weighted connective constant of the potential $\phi$ . Our algorithm approximates coefficients of the cluster expansion of the partition function and uses the interpolation method of Barvinok to extend this approximation throughout the zero-free region.
    • ISSN:
      1469-2163
      0963-5483
    • الرقم المعرف:
      10.1017/s0963548323000251
    • الرقم المعرف:
      10.48550/arxiv.2209.10453
    • Rights:
      CC BY
      arXiv Non-Exclusive Distribution
    • الرقم المعرف:
      edsair.doi.dedup.....517b3305018e009ced4975fb0bb0934b