Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Altered cell and RNA isoform diversity in aging Down syndrome brains

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
      2021
    • نبذة مختصرة :
      Significance Down syndrome (DS) neurocognitive disabilities associated with trisomy 21 are known; however, gene changes within individual brain cells occurring with age are unknown. Here, we interrogated >170,000 cells from 29 aging DS and control brains using single-nucleus RNA sequencing. We observed increases in inhibitory-over-excitatory neurons, microglial activation in the youngest DS brains coinciding with overexpression of genes associated with microglial-mediated synaptic pruning, and overexpression of the chromosome 21 gene RUNX1 that may be a potential driving factor in microglial activation. Single-nucleus long-read sequencing revealed hundreds of thousands of unannotated RNA transcripts. These included diverse species for the Alzheimer’s disease gene—amyloid precursor protein—that contained intra-exonic junctions previously associated with somatic gene recombination, which was also identified in ∼8,000 other genes.
      Down syndrome (DS), trisomy of human chromosome 21 (HSA21), is characterized by lifelong cognitive impairments and the development of the neuropathological hallmarks of Alzheimer’s disease (AD). The cellular and molecular modifications responsible for these effects are not understood. Here we performed single-nucleus RNA sequencing (snRNA-seq) employing both short- (Illumina) and long-read (Pacific Biosciences) sequencing technologies on a total of 29 DS and non-DS control prefrontal cortex samples. In DS, the ratio of inhibitory-to-excitatory neurons was significantly increased, which was not observed in previous reports examining sporadic AD. DS microglial transcriptomes displayed AD-related aging and activation signatures in advance of AD neuropathology, with increased microglial expression of C1q complement genes (associated with dendritic pruning) and the HSA21 transcription factor gene RUNX1. Long-read sequencing detected vast RNA isoform diversity within and among specific cell types, including numerous sequences that differed between DS and control brains. Notably, over 8,000 genes produced RNAs containing intra-exonic junctions, including amyloid precursor protein (APP) that had previously been associated with somatic gene recombination. These and related results illuminate large-scale cellular and transcriptomic alterations as features of the aging DS brain.
    • ISSN:
      1091-6490
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....4a96991bc136f5e51319b26b2d083b3c