Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Active dendrites regulate the spatiotemporal spread of signaling microdomains

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Public Library of Science, 2018.
    • الموضوع:
      2018
    • نبذة مختصرة :
      Microdomains that emerge from spatially constricted spread of biochemical signaling components play a central role in several neuronal computations. Although dendrites, endowed with several voltage-gated ion channels, form a prominent structural substrate for microdomain physiology, it is not known if these channels regulate the spatiotemporal spread of signaling microdomains. Here, we employed a multiscale, morphologically realistic, conductance-based model of the hippocampal pyramidal neuron that accounted for experimental details of electrical and calcium-dependent biochemical signaling. We activated synaptic N-Methyl-d-Aspartate receptors through theta-burst stimulation (TBS) or pairing (TBP) and assessed microdomain propagation along a signaling pathway that included calmodulin, calcium/calmodulin-dependent protein kinase II (CaMKII) and protein phosphatase 1. We found that the spatiotemporal spread of the TBS-evoked microdomain in phosphorylated CaMKII (pCaMKII) was amplified in comparison to that of the corresponding calcium microdomain. Next, we assessed the role of two dendritically expressed inactivating channels, one restorative (A-type potassium) and another regenerative (T-type calcium), by systematically varying their conductances. Whereas A-type potassium channels suppressed the spread of pCaMKII microdomains by altering the voltage response to TBS, T-type calcium channels enhanced this spread by modulating TBS-induced calcium influx without changing the voltage. Finally, we explored cross-dependencies of these channels with other model components, and demonstrated the heavy mutual interdependence of several biophysical and biochemical properties in regulating microdomains and their spread. Our conclusions unveil a pivotal role for dendritic voltage-gated ion channels in actively amplifying or suppressing biochemical signals and their spatiotemporal spread, with critical implications for clustered synaptic plasticity, robust information transfer and efficient neural coding.
      Author summary The spatiotemporal spread of biochemical signals in neurons and other cells regulate signaling specificity, tuning of signal propagation, along with specificity and clustering of adaptive plasticity. Theoretical and experimental studies have demonstrated a critical role for cellular morphology and the topology of signaling networks in regulating this spread. In this study, we add a significantly complex dimension to this narrative by demonstrating that voltage-gated ion channels on the plasma membrane could actively amplify or suppress the strength and spread of downstream signaling components. Given the expression of different ion channels with wide-ranging heterogeneity in gating kinetics, localization and density, our results point to an increase in complexity of and degeneracy in signaling spread, and unveil a powerful mechanism for regulating biochemical-signaling pathways across different cell types.
    • File Description:
      application/pdf
    • ISSN:
      1553-7358
      1553-734X
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....49759678b78988d3905f467c9ed17243