Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Vector competence of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquitoes for Mayaro virus

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Public Library of Science, 2020.
    • الموضوع:
      2020
    • نبذة مختصرة :
      Newly emerging or re-emerging arthropod-borne viruses (arboviruses) are important causes of human morbidity and mortality worldwide. Arboviruses such as Dengue (DENV), Zika (ZIKV), Chikungunya (CHIKV), and West Nile virus (WNV) have undergone extensive geographic expansion in the tropical and sub-tropical regions of the world. In the Americas the main vectors of DENV, ZIKV, and CHIKV are mosquito species adapted to urban environments, namely Aedes aegypti and Aedes albopictus, whereas the main vector of WNV is Culex quinquefasciatus. Given the widespread distribution in the Americas and high permissiveness to arbovirus infection, these mosquito species may play a key role in the epidemiology of other arboviruses normally associated with sylvatic vectors. Here, we test this hypothesis by determining the vector competence of Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus to Mayaro (MAYV) virus, a sylvatic arbovirus transmitted mainly by Haemagogus janthinomys that has been causing an increasing number of outbreaks in South America, namely in Brazil. Using field mosquitoes from Brazil, female mosquitoes were experimentally infected, and their competence for infection and transmission rates of MAYV was evaluated. We found consistent infection rate for MAYV in Ae. aegypti (57.5%) and Ae. albopictus (61.6%), whereas very low rates were obtained for Cx. quinquefasciatus (2.5%). Concordantly, we observed high potential transmission ability in Ae. aegypti and Ae. albopictus (69.5% and 71.1% respectively), in contrast to Cx. quinquefasciatus, which could not transmit the MAYV. Notably, we found that very low quantities of virus present in the saliva (undetectable by RT-qPCR) were sufficiently virulent to guarantee transmission. Although Ae. aegypti and Ae. albopictus mosquitoes are not the main vectors for MAYV, our studies suggest that these mosquitoes could play a significant role in the transmission of this arbovirus, since both species showed significant vector competence for MAYV (Genotype D), under laboratory conditions.
      Author summary The present study demonstrated that Ae. aegypti and Ae. albopictus mosquitoes can be competent laboratory vectors for MAYV. In contrast, Cx. quinquefasciatus mosquitoes were refractory to MAYV. Regarding the viral dilution and nanoinjection, a higher detection sensitivity was observed after virus nanoinjection into naïve mosquitoes, indicating that only a few viral particles are required to infect mosquitoes, and these particles may not be detected by RT-qPCR before the nanoinjection procedure.
    • ISSN:
      1935-2735
      1935-2727
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....3bcabf36e52890f67be822dcc0800250