Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Impact of Amyloid Pathology in Mild Cognitive Impairment Subjects: The Longitudinal Cognition and Surface Morphometry Data

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
      2022
    • نبذة مختصرة :
      The amyloid framework forms the central medical theory related to Alzheimer disease (AD), and the in vivo demonstration of amyloid positivity is essential for diagnosing AD. On the basis of a longitudinal cohort design, the study investigated clinical progressive patterns by obtaining cognitive and structural measurements from a group of patients with amnestic mild cognitive impairment (MCI); the measurements were classified by the positivity (Aβ+) or absence (Aβ−) of the amyloid biomarker. We enrolled 185 patients (64 controls, 121 patients with MCI). The patients with MCI were classified into two groups on the basis of their [18F]flubetaben or [18F]florbetapir amyloid positron-emission tomography scan (Aβ+ vs. Aβ−, 67 vs. 54 patients) results. Data from annual cognitive measurements and three-dimensional T1 magnetic resonance imaging scans were used for between-group comparisons. To obtain longitudinal cognitive test scores, generalized estimating equations were applied. A linear mixed effects model was used to compare the time effect of cortical thickness degeneration. The cognitive decline trajectory of the Aβ+ group was obvious, whereas the Aβ− and control groups did not exhibit a noticeable decline over time. The group effects of cortical thickness indicated decreased entorhinal cortex in the Aβ+ group and supramarginal gyrus in the Aβ− group. The topology of neurodegeneration in the Aβ− group was emphasized in posterior cortical regions. A comparison of the changes in the Aβ+ and Aβ− groups over time revealed a higher rate of cortical thickness decline in the Aβ+ group than in the Aβ− group in the default mode network. The Aβ+ and Aβ− groups experienced different APOE ε4 effects. For cortical–cognitive correlations, the regions associated with cognitive decline in the Aβ+ group were mainly localized in the perisylvian and anterior cingulate regions. By contrast, the degenerative topography of Aβ− MCI was scattered. The memory learning curves, cognitive decline patterns, and cortical degeneration topographies of the two MCI groups were revealed to be different, suggesting a difference in pathophysiology. Longitudinal analysis may help to differentiate between these two MCI groups if biomarker access is unavailable in clinical settings.
    • File Description:
      application/pdf
    • ISSN:
      1422-0067
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....3951359e3dc292cbccc9d659ab9ffa0f