Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Largest eigenvalues of sparse inhomogeneous Erdős–Rényi graphs

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut de Mathématiques de Marseille (I2M); Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU); Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich); Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS); ANR-16-CE40-0024,SAMARA,Spectres, algorithmes et marches aléatoires dans les réseaux aléatoires(2016)
    • الموضوع:
      2019
    • نبذة مختصرة :
      We consider inhomogeneous Erdős–Renyi graphs. We suppose that the maximal mean degree $d$ satisfies $d\ll\log n$. We characterise the asymptotic behaviour of the $n^{1-o(1)}$ largest eigenvalues of the adjacency matrix and its centred version. We prove that these extreme eigenvalues are governed at first order by the largest degrees and, for the adjacency matrix, by the nonzero eigenvalues of the expectation matrix. Our results show that the extreme eigenvalues exhibit a novel behaviour which in particular rules out their convergence to a nondegenerate point process. Together with the companion paper [Benaych-Georges, Bordenave and Knowles (2017)], where we analyse the extreme eigenvalues in the complementary regime $d\gg\log n$, this establishes a crossover in the behaviour of the extreme eigenvalues around $d\sim\log n$. Our proof relies on a tail estimate for the Poisson approximation of an inhomogeneous sum of independent Bernoulli random variables, as well as on an estimate on the operator norm of a pruned graph due to Le, Levina, and Vershynin from [Random Structures Algorithms 51 (2017) 538–561].
    • File Description:
      application/pdf
    • ISSN:
      0091-1798
      2168-894X
    • الرقم المعرف:
      10.1214/18-aop1293
    • الرقم المعرف:
      10.1214/18-AOP1293⟩
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....2db03ca29d25184b695a93e0062e49c7