Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Constructing Turing complete Euler flows in dimension 3

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Universitat Politècnica de Catalunya [Barcelona] (UPC); Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE); Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS); Instituto de Ciencias Matemàticas [Madrid] (ICMAT); Universidad Autonoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM)-Universidad Carlos III de Madrid [Madrid] (UC3M); Ministerio de Economía y Competitividad (España); Ministerio de Ciencia e Innovación (España); Ministerio de Ciencia, Innovación y Universidades (España); Observatoire de Paris; Université Paris sciences et lettres (PSL); Universidad Autónoma de Madrid (UAM); Universitat Politècnica de Catalunya. Departament de Matemàtiques; Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions; Universidad Autonoma de Madrid (UAM); Universidad Carlos III de Madrid [Madrid] (UC3M)-Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM)-Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)
    • بيانات النشر:
      HAL CCSD, 2021.
    • الموضوع:
      2021
    • نبذة مختصرة :
      Can every physical system simulate any Turing machine? This is a classical problem that is intimately connected with the undecidability of certain physical phenomena. Concerning fluid flows, Moore [C. Moore, Nonlinearity 4, 199 (1991)] asked if hydrodynamics is capable of performing computations. More recently, Tao launched a program based on the Turing completeness of the Euler equations to address the blow-up problem in the Navier¿Stokes equations. In this direction, the undecidability of some physical systems has been studied in recent years, from the quantum gap problem to quantum-field theories. To the best of our knowledge, the existence of undecidable particle paths of three-dimensional fluid flows has remained an elusive open problem since Moore¿s works in the early 1990s. In this article, we construct a Turing complete stationary Euler flow on a Riemannian S3 and speculate on its implications concerning Tao¿s approach to the blow-up problem in the Navier¿Stokes equations.
      Robert Cardona was supported by the Spanish Ministry of Economy and Competitiveness, through the María de Maeztu Program for Units of Excellence in R&D (MDM-2014-0445) via an FPI grant. R.C. and E.M. are partially supported by Grants MTM2015-69135-P/FEDER, the Spanish Ministry of Science and Innovation PID2019-103849GB-I00/AEI/10.13039/501100011033, and Agència de Gestió d’Ajuts Universitaris i de Recerca Grant 2017SGR932. E.M. is supported by the Catalan Institution for Research and Advanced Studies via an ICREA Academia Prize 2016. D.P.-S. is supported by MICINN Grant MTM PID2019-106715GB-C21 and MCIU Grant Europa Excelencia EUR2019-103821. F.P. is supported by MICINN/FEDER Grants MTM2016-79400-P and PID2019-108936GB-C21. This work was partially supported by ICMAT–Severo Ochoa Grant CEX2019-000904-S.
    • File Description:
      application/pdf
    • ISSN:
      0027-8424
      1091-6490
    • الرقم المعرف:
      10.1073/pnas.XXXXXXXXXX⟩
    • الرقم المعرف:
      10.1073/pnas.2026818118⟩
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....28cdee299422dafe3cfff6c3680d7d5d