نبذة مختصرة : Tourmalinization associated with peraluminous granitic intrusions in metapelitic host-rocks has been widely recorded in the Iberian Peninsula, given the importance of tourmaline as a tracer of granite magma evolution and potential indicator of Sn-W mineralizations. In the Penamacor-Monsanto granite pluton (Central Eastern Portugal, Central Iberian Zone), tourmaline occurs: (1) as accessory phase in two-mica granitic rocks, muscovite-granites and aplites, (2) in quartz (±mica)-tourmaline rocks (tourmalinites) in several exocontact locations, and (3) as a rare detrital phase in contact zone hornfels and metapelitic host-rocks. Electron microprobe and stable isotope (d18O, dD, d11B) data provide clear distinctions between tourmaline populations from these different settings: (a) schorl–oxyschorl tourmalines from granitic rocks have variable foititic component (X? = 17–57 %) and Mg/(Mg + Fe) ratios (0.19–0.50 in two-mica granitic rocks, and 0.05–0.19 in the more differentiated muscovite-granite and aplites); granitic tourmalines have constant d18O values (12.1 ± 0.1 ‰), with wider-ranging dD (-78.2 ± 4.7 ‰) and d11B (-10.7 to -9.0 ‰) values; (b) vein/breccia oxyschorl [Mg/(Mg + Fe) = 0.31–0.44] results from late, B- and Fe-enriched magma-derived fluids and is characterized by d18O = 12.4 ‰, dD = -29.5 ‰, and d11B = -9.3 ‰, while replacement tourmalines have more dravitic compositions [Mg/(Mg + Fe) = 0.26–0.64], close to that of detrital tourmaline in the surrounding metapelitic rocks, and yield relatively constant d18O values (13.1–13.3 ‰), though wider-ranging dD (-58.5 to -36.5 ‰) and d11B (-10.2 to -8.8 ‰) values; and (c) detrital tourmaline in contact rocks and regional host metasediments is mainly dravite [Mg/(Mg + Fe) = 0.35–0.78] and oxydravite [Mg/(Mg + Fe) = 0.51–0.58], respectively. Boron contents of the granitic rocks are low (
No Comments.