Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Cocaine reward and memory after chemogenetic inhibition of distinct serotonin neuron subtypes in mice

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Springer Science and Business Media LLC, 2020.
    • الموضوع:
      2020
    • نبذة مختصرة :
      RATIONALE: We probed serotonin neurons, those denoted by their developmental gene expression as r2Hoxa2-Pet1 (experiment 1) and Drd1a-Pet1 (experiment 2), for differential modulation of cocaine reward and memory as revealed by the expression and development of conditioned place preference (CPP) in transgenic mice. OBJECTIVES: To query roles in CPP, we inhibited neurons cell autonomously in vivo by activating the transgenically expressed, synthetic DREADD receptor hM(4)Di (Di) with the exogenous ligand clozapine-N-oxide (CNO). METHODS: To examine CPP expression, mice were conditioned using behaviorally active doses of cocaine (10.0 or 17.8 mg/kg) vs. saline followed by CPP assessment, first without neuron inhibition (post-conditioning session 1), and then with CNO-mediated neuron inhibition (post-conditioning session 2), followed by 4 more post-conditioning sessions. To examine CPP development, we administered CNO during conditioning sessions and then assayed CPP across 6 post-conditioning sessions. RESULTS: In r2Hoxa2-Pet1-Di mice, post-conditioning CNO administration did not impact cocaine CPP expression, but after CNO administration during conditioning, cocaine CPP (17.8 mg/kg) persisted across post-conditioning sessions compared with that in controls, suggesting a deficit in extinguishing cocaine memory. Drd1a-Pet1-Di mice, prior to CNO-Di-triggered neuronal inhibition, unexpectedly expressed heightened cocaine CPP (10.0 and 17.8 mg/kg) compared with controls, and this basal phenotype was transiently blocked by acute post-conditioning CNO administration and persistently blocked by repeated CNO administration during conditioning. CONCLUSION: Cocaine reward and memory likely map to distinct serotonergic Pet1 neuron subtypes. r2Hoxa2-Pet1 neurons normally may limit the durability of cocaine memory, without impacting initial cocaine reward magnitude. Drd1a-Pet1 neurons normally may help to promote cocaine reward.
    • ISSN:
      1432-2072
      0033-3158
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....1901226f1877bb3af44f8773e5bdf0df