Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A Dual Approach of an Oil–Membrane Composite and Boron-Doped Diamond Electrode to Mitigate Biofluid Interferences

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Multidisciplinary Digital Publishing Institute, 2021.
    • الموضوع:
      2021
    • نبذة مختصرة :
      Electrochemical biosensors promise a simple method to measure analytes for both point-of-care diagnostics and continuous, wearable biomarker monitors. In a liquid environment, detecting the analyte of interest must compete with other solutes that impact the background current, such as redox-active molecules, conductivity changes in the biofluid, water electrolysis, and electrode fouling. Multiple methods exist to overcome a few of these challenges, but not a comprehensive solution. Presented here is a combined boron-doped diamond electrode and oil–membrane protection approach that broadly mitigates the impact of biofluid interferents without a biorecognition element. The oil–membrane blocks the majority of interferents in biofluids that are hydrophilic while permitting passage of important hydrophobic analytes such as hormones and drugs. The boron-doped diamond then suppresses water electrolysis current and maintains peak electrochemical performance due to the foulant-mitigation benefits of the oil–membrane protection. Results show up to a 365-fold reduction in detection limits using the boron-doped diamond electrode material alone compared with traditional gold in the buffer. Combining the boron-doped diamond material with the oil–membrane protection scheme maintained these detection limits while exposed to human serum for 18 h.
    • File Description:
      application/pdf
    • ISSN:
      1424-8220
    • الرقم المعرف:
      10.3390/s21238063
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....1642ecc14d99af73ed705e030246e35d