Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

On the binary and Boolean rank of regular matrices

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Elsevier BV, 2023.
    • الموضوع:
      2023
    • نبذة مختصرة :
      A $0,1$ matrix is said to be regular if all of its rows and columns have the same number of ones. We prove that for infinitely many integers $k$, there exists a square regular $0,1$ matrix with binary rank $k$, such that the Boolean rank of its complement is $k^{\widetilde{\Omega}(\log k)}$. Equivalently, the ones in the matrix can be partitioned into $k$ combinatorial rectangles, whereas the number of rectangles needed for any cover of its zeros is $k^{\widetilde{\Omega}(\log k)}$. This settles, in a strong form, a question of Pullman (Linear Algebra Appl., 1988) and a conjecture of Hefner, Henson, Lundgren, and Maybee (Congr. Numer., 1990). The result can be viewed as a regular analogue of a recent result of Balodis, Ben-David, G\"{o}\"{o}s, Jain, and Kothari (FOCS, 2021), motivated by the clique vs. independent set problem in communication complexity and by the (disproved) Alon-Saks-Seymour conjecture in graph theory. As an application of the produced regular matrices, we obtain regular counterexamples to the Alon-Saks-Seymour conjecture and prove that for infinitely many integers $k$, there exists a regular graph with biclique partition number $k$ and chromatic number $k^{\widetilde{\Omega}(\log k)}$.
      Comment: 21 pages
    • ISSN:
      0022-0000
    • الرقم المعرف:
      10.1016/j.jcss.2023.01.005
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....112d78c1b1baea7558cf33a86394465e