نبذة مختصرة : Internal tandem duplications (ITD) in the Fms-related tyrosine kinase 3 receptor (FLT3) are associated with a dismal prognosis in acute myeloid leukemia (AML). FLT3 inhibitors such as sorafenib may improve outcome, but only few patients display long-term responses, prompting the search for underlying resistance mechanisms and therapeutic strategies to overcome them. Here we identified that the nuclear factor of activated T cells, NFATc1, is frequently overexpressed in FLT3-ITD-positive (FLT3-ITD+) AML. NFATc1 knockdown using inducible short hairpin RNA or pharmacological NFAT inhibition with cyclosporine A (CsA) or VIVIT significantly augmented sorafenib-induced apoptosis of FLT3-ITD+ cells. CsA also potently overcame sorafenib resistance in FLT3-ITD+ cell lines and primary AML. Vice versa, de novo expression of a constitutively nuclear NFATc1-mutant mediated instant and robust sorafenib resistance in vitro. Intriguingly, FLT3-ITD+ AML patients (n=26) who received CsA as part of their rescue chemotherapy displayed a superior outcome when compared with wild-type FLT3 (FLT3-WT) AML patients. Our data unveil NFATc1 as a novel mediator of sorafenib resistance in FLT3-ITD+ AML. CsA counteracts sorafenib resistance and may improve treatment outcome in AML by means of inhibiting NFAT.
No Comments.