Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Renormalizing the Kardar–Parisi–Zhang Equation in $$d\ge 3$$ in Weak Disorder

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire de Probabilités, Statistiques et Modélisations (LPSM (UMR_8001)); Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      Springer Science and Business Media LLC, 2020.
    • الموضوع:
      2020
    • نبذة مختصرة :
      We study Kardar–Parisi–Zhang equation in spatial dimension 3 or larger driven by a Gaussian space–time white noise with a small convolution in space. When the noise intensity is small, it is known that the solutions converge to a random limit as the smoothing parameter is turned off. We identify this limit, in the case of general initial conditions ranging from flat to droplet. We provide strong approximations of the solution which obey exactly the limit law. We prove that this limit has sub-Gaussian lower tails, implying existence of all negative (and positive) moments.
    • ISSN:
      1572-9613
      0022-4715
    • الرقم المعرف:
      10.1007/s10955-020-02539-7
    • الرقم المعرف:
      10.1007/s10955-020-02539-7⟩
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....0dd4152fc96f61db39943e623d103b5e