Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Interest-based recommendations for business intelligence users

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire d'Informatique Fondamentale et Appliquée de Tours (LIFAT); Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS); SAP AI Research (SAP AI ); Systèmes d’Informations Généralisées (IRIT-SIG); Institut de recherche en informatique de Toulouse (IRIT); Université Toulouse 1 Capitole (UT1); Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3); Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1); Université Fédérale Toulouse Midi-Pyrénées; Bases de données et traitement des langues naturelles (BDTLN); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL); Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
    • بيانات النشر:
      HAL CCSD, 2019.
    • الموضوع:
      2019
    • نبذة مختصرة :
      International audience; It is quite common these days for experts, casual analysts, executives and data enthusiasts, to analyze large datasets through user-friendly interfaces on top of Business Intelligence (BI) systems. However, current BI systems do not adequately detect and characterize user interests, which may lead to tedious and unproductive interactions. In this paper, we propose a collaborative recommender system for BI interactions, specifically designed to take advantage of identified user interests. Such user interests are discovered by characterizing the intent of the interaction with the BI system. Building on user modeling for proactive search systems, we identify a set of features for an adequate description of intents, and a similarity measure for grouping intents into coherent clusters. On top of these automatically identified interests, we build a collaborative recommender system based on a Markov model that represents the probability for a user to switch from one interest to another. We validate our approach experimentally with an in-depth user study, where we analyze traces of BI navigation. Our results are two-fold. First, we show that our similarity measure outperforms a state-of-the-art query similarity measure and yields a very good precision with respect to expressed user interests. Second, we compare our recommender system to two state-of-the-art systems to demonstrate the benefit of relying on user interests.
    • ISSN:
      0306-4379
    • الرقم المعرف:
      10.1016/j.is.2018.08.004⟩
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....0d676c5bb908b9471d993718afdf69b1