Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A Dual Role Reductase from Phytosterols Catabolism Enables the Efficient Production of Valuable Steroid Precursors

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Wiley, 2021.
    • الموضوع:
      2021
    • نبذة مختصرة :
      4-Androstenedione (4-AD) and progesterone (PG) are two of the most important precursors for synthesis of steroid drugs, however their current manufacturing processes suffer from low efficiency and severe environmental issues. In this study, we decipher a dual-role reductase (mnOpccR) in the phytosterols catabolism, which engages in two different metabolic branches to produce the key intermediate 20-hydroxymethyl pregn-4-ene-3-one (4-HBC) through a 4-e reduction of 3-oxo-4-pregnene-20-carboxyl-CoA (3-OPC-CoA) and 2-e reduction of 3-oxo-4-pregnene-20-carboxyl aldehyde (3-OPA), respectively. Inactivation or overexpression of mnOpccR in the Mycobacterium neoaurum can achieve exclusive production of either 4-AD or 4-HBC from phytosterols. By utilizing a two-step synthesis, 4-HBC can be efficiently converted into PG in a scalable manner (100 gram scale). This study deciphers a pivotal biosynthetic mechanism of phytosterol catabolism and provides very efficient production routes of 4-AD and PG.
    • ISSN:
      1521-3757
      0044-8249
    • الرقم المعرف:
      10.1002/ange.202015462
    • Rights:
      CLOSED
    • الرقم المعرف:
      edsair.doi.dedup.....0affadf968344522278a0d68eac2a894