Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Identification and characterization of a novel 2R,3R-Butanediol dehydrogenase from Bacillus sp. DL01

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Elsevier BV, 2021.
    • الموضوع:
      2021
    • نبذة مختصرة :
      Background 2R,3R-butanediol dehydrogenase (R-BDH) and other BDHs contribute to metabolism of 3R/3S-Acetoin (3R/3S-AC) and 2,3-butanediol (2,3-BD), which are important bulk chemicals used in different industries. R-BDH is responsible for oxidizing the hydroxyl group at their (R) configuration. Bacillus species is a promising producer of 3R/3S-AC and 2,3-BD. In this study, R-bdh gene encoding R-BDH from Bacillus sp. DL01 was isolated, expressed and identified. Results R-BDH exerted reducing activities towards Diacetyl (DA) and 3R/3S-AC using NADH, and oxidizing activities towards 2R,3R-BD and Meso-BD using NAD+, while no activity was detected with 2S,3S-BD. The R-BDH showed its activity at a wide range of temperature (25°C to 65°C) and pH (5.0–8.0). The R-BDH activity was increased significantly by Cd2+ when DA, 3R/3S-AC, and Meso-BD were used as substrates, while Fe2+ enhanced the activity remarkably at 2R,3R-BD oxidation. Kinetic parameters of the R-BDH from Bacillus sp. DL01 showed the lowest Km, the highest Vmax, and the highest Kcat towards the racemic 3R/3S-AC substrate, also displayed low Km towards 2R,3R-BD and Meso-BD when compared with other reported R-BDHs. Conclusions The R-BDH from Bacillus sp. DL01 was characterized as a novel R-BDH with high enantioselectivity for R-configuration. It considered NAD+ and Zn2+ dependant enzyme, with a significant affinity towards 3R/3S-AC, 2R,3R-BD, and Meso-BD substrates. Thus, R-BDH is providing an approach to regulate the production of 3R/3S-AC or 2,3-BD from Bacillus sp. DL01. How to cite: Elmahmoudy M, Elfeky N, Zhongji P, et al. Identification and characterization of a novel 2R,3R-Butanediol Dehydrogenase from Bacillus sp. DL01. Electron J Biotechnol 2021;49. https://doi.org/10.1016/j.ejbt.2020.11.002
    • ISSN:
      0717-3458
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi.dedup.....03ed3196ff5678e6d7ae7bf01a0536f5