Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Delineating the interactions between the cannabinoid CB 2 receptor and its regulatory effectors; β‐arrestins and GPCR kinases

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Wiley, 2022.
    • الموضوع:
      2022
    • نبذة مختصرة :
      BACKGROUND AND PURPOSE The cannabinoid CB2 receptor (CB2 ) is a promising therapeutic target for modulating inflammation. However, little is known surrounding the mechanisms underpinning CB2 desensitisation and regulation, particularly the role of G protein-coupled receptor kinases (GRKs). Here, we evaluated the role of six GRK isoforms in β-arrestin recruitment to CB2 . Mutagenesis of several distal C-terminal aspartic acid residues was also performed in an attempt to delineate additional structural elements involved in the regulation of CB2 . EXPERIMENTAL APPROACH In CB2 -expressing HEK 293 cells, β-arrestin translocation was measured using real-time BRET assays. G protein dissociation BRET assays were performed to assess the activation and desensitisation of CB2 in the presence of β-arrestin 2. KEY RESULTS Overexpression of GRK isoforms 1-6 failed to considerably improve translocation of either β-arrestin 1 or β-arrestin 2 to CB2 . Consistent with this, inhibition of endogenous GRK2/3 did not substantially reduce β-arrestin 2 translocation. Mutagenesis of C-terminal aspartic acid residues resulted in attenuation of β-arrestin 2 translocation, which translated to a reduction in desensitisation of G protein activation. CONCLUSION AND IMPLICATIONS Our findings suggest that CB2 does not adhere to the classical GPCR regulatory paradigm, entailing GRK- and β-arrestin-mediated desensitisation. Instead, C-terminal aspartic acid residues may act as phospho-mimics to induce β-arrestin activation. This study provides novel insights into the regulatory mechanisms of CB2 , which may aid in our understanding of drug tolerance and dependence.
    • ISSN:
      1476-5381
      0007-1188
    • Rights:
      CLOSED
    • الرقم المعرف:
      edsair.doi...........eab0a17eb4f02e838e92f18f4ec7f1e8