Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Approximation of the Fractional Schrödinger Propagator on Compact Manifolds

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Springer Science and Business Media LLC, 2021.
    • الموضوع:
      2021
    • نبذة مختصرة :
      Let £ be a second order positive, elliptic differential operator that is self-adjoint with respect to some C∞ density dx on a compact connected manifold $$\mathbb{M}$$ . We proved that if 0 < α < 1, α/2 < s < α and $$f \in {H^s}(\mathbb{M})$$ then the fractional Schrodinger propagator $${{\rm{e}}^{{\rm{i}}t{{\cal L}^{\alpha /2}}}}$$ on $$\mathbb{M}$$ satisfies $${{\rm{e}}^{{\rm{i}}t{{\cal L}^{\alpha /2}}}}f(x) - f(x) = o({t^{s/\alpha - \varepsilon }})$$ almost everywhere as t → 0+, for any e > 0.
    • ISSN:
      1439-7617
      1439-8516
    • Rights:
      CLOSED
    • الرقم المعرف:
      edsair.doi...........b5302a0f98a2ad6b95d5cdb80281b5d1