نبذة مختصرة : This paper gives an integrated view of implementing automated diagnostic systems for clinical decision-making. Because of the importance of making the right decision, better classification procedures are necessary for clinical decisions. The major objective of the paper is to be a guide for readers who want to develop an automated decision support system for clinical practice. The purpose was to determine an optimum classification scheme with high diagnostic accuracy for this problem. Several different classification algorithms were tested and benchmarked for their performance. The performance of the classification algorithms is illustrated on two data sets: the Pima Indians diabetes and the Wisconsin breast cancer. The present research demonstrates that the support vector machines achieved diagnostic accuracies which were higher than those of other automated diagnostic systems.
No Comments.