Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

An Error Estimate for Symplectic Euler Approximation of Optimal Control Problems

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Society for Industrial & Applied Mathematics (SIAM), 2015.
    • الموضوع:
      2015
    • نبذة مختصرة :
      This work focuses on numerical solutions of optimal control problems. A time discretization error representation is derived for the approximation of the associated value function. It concerns symplectic Euler solutions of the Hamiltonian system connected with the optimal control problem. The error representation has a leading-order term consisting of an error density that is computable from symplectic Euler solutions. Under an assumption of the pathwise convergence of the approximate dual function as the maximum time step goes to zero, we prove that the remainder is of higher order than the leading-error density part in the error representation. With the error representation, it is possible to perform adaptive time stepping. We apply an adaptive algorithm originally developed for ordinary differential equations. The performance is illustrated by numerical tests.
    • ISSN:
      1095-7197
      1064-8275
    • الرقم المعرف:
      10.1137/140959481
    • Rights:
      OPEN
    • الرقم المعرف:
      edsair.doi...........807f40d6ddaeaedf1eeabd489b5f2e23