نبذة مختصرة : El trabajo utiliza técnicas de aprendizaje computacional (machine learning) para la estimación del riesgo escolar durante los primeros tres años de la trayectoria en la enseñanza primaria de una cohorte de alumnos uruguayos. Se utilizan tres técnicas de análisis (regresión logística, redes bayesianas y árboles de clasificación) con el propósito de identificar el riesgo de trayectorias escolares pautadas por la repetición de al menos un curso, en función de un conjunto de factores antecedentes a su transición al primer grado de enseñanza primaria. Estos factores abarcan desde las condiciones sociosanitarias al momento del nacimiento hasta la situación familiar y educativa de los alumnos sobre el final de su escolarización preprimaria. En particular, el análisis se focaliza en el poder predictivo de las habilidades captadas por la Evaluación Infantil Temprana (EIT) que se aplica próximo a la finalización de la educación inicial, sobre los cinco años de edad. Los resultados sugieren que las habilidades captadas por EIT logran identificar anticipadamente a la mayoría de los niños con riesgo educativo. Los niveles de precisión y de sensibilidad de los modelos que incluyen este factor evidencian el potencial de los sistemas de alerta temprana para detectar y prevenir situaciones de “fracaso escolar”.
No Comments.