Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Antagonistic roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Qiao, Huanyu; Prasada Rao, H B D; Yang, Ye; Fong, Jared H; Cloutier, Jeffrey M; Deacon, Dekker C; Nagel, Kathryn E; Swartz, Rebecca K; Strong, Edward; Holloway, J Kim; Cohen, Paula E; Schimenti, John; Ward, Jeremy; Hunter, Neil
- المصدر:
Nature Genetics; Feb2014, Vol. 46 Issue 2, p194-199, 6p, 6 Graphs
- الموضوع:
- معلومة اضافية
- نبذة مختصرة :
Crossover recombination facilitates the accurate segregation of homologous chromosomes during meiosis. In mammals, poorly characterized regulatory processes ensure that every pair of chromosomes obtains at least one crossover, even though most recombination sites yield non-crossovers. Designation of crossovers involves selective localization of the SUMO ligase RNF212 to a minority of recombination sites, where it stabilizes pertinent factors such as MutSγ (ref. 4). Here we show that the ubiquitin ligase HEI10 (also called CCNB1IP1) is essential for this crossover/non-crossover differentiation process. In HEI10-deficient mice, RNF212 localizes to most recombination sites, and dissociation of both RNF212 and MutSγ from chromosomes is blocked. Consequently, recombination is impeded, and crossing over fails. In wild-type mice, HEI10 accumulates at designated crossover sites, suggesting that it also has a late role in implementing crossing over. As with RNF212, dosage sensitivity for HEI10 indicates that it is a limiting factor for crossing over. We suggest that SUMO and ubiquitin have antagonistic roles during meiotic recombination that are balanced to effect differential stabilization of recombination factors at crossover and non-crossover sites. [ABSTRACT FROM AUTHOR]
- نبذة مختصرة :
Copyright of Nature Genetics is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.