Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Identifying Coordinative Structure Using Principal Component Analysis Based on Coherence Derived From Linear Systems Analysis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      Principal component analysis is a powerful and popular technique for capturing redundancy in muscle activity and kinematic patterns. A primary limitation of the correlations or covariances between signals on which this analysis is based is that they do not account for dynamic relations between signals, yet such relations—such as that between neural drive and muscle tension—are widespread in the sensorimotor system. Low correlations may thus be obtained and signals may appear independent despite a dynamic linear relation between them. To address this limitation, linear systems analysis can be used to calculate the matrix of overall coherences between signals, which measures the strength of the relation between signals taking dynamic relations into account. Using ankle, knee, and hip sagittal-plane angles from 6 healthy subjects during overground walking at preferred speed, it is shown that with conventional correlation matrices the first principal component accounted for ∼50% of total variance in the data set, while with overall coherence matrices the first component accounted for > 95% of total variance. The results demonstrate that the dimensionality of the coordinative structure can be overestimated using conventional correlation, whereas a more parsimonious structure is identified with overall coherence. [ABSTRACT FROM PUBLISHER]
    • نبذة مختصرة :
      Copyright of Journal of Motor Behavior is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)