Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Identification of nicotine biotransformation intermediates by Agrobacterium tumefaciens strain S33 suggests a novel nicotine degradation pathway.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      Nicotine, a major alkaloid in tobacco plants and the main toxic chemical in tobacco wastes, can be transformed by bacteria into hydroxylated-pyridine intermediates, which are important precursors for the chemical synthesis of valuable drugs and insecticides. Such biotransformation could be a useful approach to utilize tobacco and its wastes. In this study, we explored nicotine degradation by a recently isolated Agrobacterium tumefaciens S33 by identifying the intermediates during its growth on nicotine and during transformation of nicotine with its resting cells. Five hydroxylated-pyridine intermediates were detected through multiple approaches, including GC-HR-MS, HPLC, and ESI-Q-TOF MS analyses. Surprisingly, these identified intermediates suggest that strain S33 employs a novel pathway that is different from the two characterized pathways described in Arthrobacter and Pseudomonas. Based on these findings, we propose that strain S33 is able to transform nicotine to 6-hydroxy-pseudooxynicotine first via the pyridine pathway through 6-hydroxy- L-nicotine and 6-hydroxy- N-methylmyosmine, and then, it turns to the pyrrolidine pathway with the formation of 6-hydroxy-3-succinoylpyridine and 2,5-dihydroxypyridine. The activities of the key enzymes, nicotine dehydrogenase, 6-hydroxy- L-nicotine oxidase, and 6-hydroxy-3-succinoylpyridine hydroxylase, were demonstrated in the cell extract of strain S33 and by partially enriched enzymes. Moreover, the cell extract could transform 6-hydroxy-pseudooxynicotine into 6-hydroxy-3-succinoylpyridine by coupling with 6-hydroxy- L-nicotine oxidation reaction by 6-hydroxy- L-nicotine oxidase. These results indicated that strain S33 can transform nicotine into renewable hydroxylated-pyridine intermediates by the special pathway, in which at least three intermediates, 6-hydroxy- L-nicotine, 6-hydroxy-3-succinoylpyridine, and 2,5-dihydroxypyridine, have potential to be further chemically modified into useful compounds. [ABSTRACT FROM AUTHOR]