Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Increased Mitochondrial DNA Copy Number in Occupations Associated with Low-Dose Benzene Exposure.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
    • الموضوع:
    • نبذة مختصرة :
      BACKGROUND: Benzene is an established leukemogen at high exposure levels. Although low-level benzene exposure is widespread and may induce oxidative damage, no mechanistic biomarkers are available to detect biological dysfunction at low doses. OBJECTIVES: Our goals were to determine in a large multicenter cross-sectional study whether low-level benzene is associated with increased blood mitochondrial DNA copy number (mtDNAcn, a biological oxidative response to mitochondrial DNA damage and dysfunction) and to explore potential links between mtDNAcn and leukemia-related epigenetic markers. METHODS: We measured blood relative mtDNAcn by real-time polymerase chain reaction in 341 individuals selected from various occupational groups with low-level benzene exposures (> 100 times lower than the Occupational Safety and Health Administration/European Union standards) and 178 referents from three Italian cities (Genoa, Milan, Cagliari). RESULTS: In each city, benzene-exposed participants showed higher mtDNAcn than referents: mtDNAcn was 0.90 relative units in Genoa bus drivers and 0.75 in referents (p = 0.019); 0.90 in Milan gas station attendants, 1.10 in police officers, and 0.75 in referents (p-trend = 0.008); 1.63 in Cagliari petrochemical plant workers, 1.25 in referents close to the plant, and 0.90 in referents farther from the plant (p-trend = 0.046). Using covariate-adjusted regression models, we estimated that an interquartile range increase in personal airborne benzene was associated with percent increases in mtDNAcn equal to 10.5% in Genoa (p = 0.014), 8.2% (p = 0.008) in Milan, 7.5% in Cagliari (p = 0.22), and 10.3% in all cities combined (p < 0.001). Using methylation data available for the Milan participants, we found that mtDNAcn was associated with LINE-1 hypomethylation (-2.41%; p = 0.007) and p15 hypermethylation (+15.95%, p = 0.008). CONCLUSIONS: Blood MtDNAcn was increased in persons exposed to low benzene levels, potentially reflecting mitochondrial DNA damage and dysfunction. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Environmental Health Perspectives is the property of National Institute of Environmental Health Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)